

Applicability of object-based storage
devices in parallel file systems

Pete Wyckoff

Ohio Supercomputer Center

HECURA Showcase 7 aug 07

pw@osc.edu

Vision

● Processors faster, disk densities up, but I/O
rates comparatively flat

● Leverage intelligent peripherals to improve
scalability, managability, performance

Serverless parallel distributed file systems

Motivation

● OSDs offer higher-level semantic interface
● Secure, direct access of storage by clients

● Our work
– Examine role of OSDs in parallel file systems
– Analyze trade-offs of using OSDs for various

aspects of parallel FSes
– Develop extensions required for efficient use of

OSDs in HPC parallel environments

OSD Background

● T10 specification
● Prototypes
● Emulators

● Pure target
● Security model

Mapping Data to Objects

● Block-based "objects" are 512 bytes
● OSD objects could be files
● For striped files, object is stripe, or stripe set?
● Collection feature allows grouping objects

– fast searching
– choose object boundaries to coincide with search

● Delegating object creation to clients
● When to create objects on create?

– lazy, preallocate

Metadata

● OSDs store attributes with objects
● How do parallel FS attributes map to these?

– uid, gid, perm, [acm]time, type
● mtime of object vs mtime of file

– data distribution: mapping of bytes to objects
– POSIX extended attributes

● Managing collective behavior
– object allocation, fsck, rebalancing

● Select objects by attribute
– collections for indexing applied to metadata

Directories

● Familiar form of data organization
● No consistency to relax for directories
● Need overall sequential behavior for any single

directory
● For passive targets, this may be impossible

Progress

● Full stack for OSD work
– initiator library
– iSCSI target
– OSD emulator

● Parallel file system using OSDs
✔ Phase 1: datafile

● striping, handle mapping, object management
✔ Phase 2: metafile

● handle mapping, metadata storage, distributions

– Phase 3: directory
● atomicity, tree layout, POSIX corner cases

Stack

Initiator
● Create CDBs
● Submit commands
● Retrieve results
● Generate and parse get/set attributes
● Device enumeration and mapping
● Python interface and basic unit tests
● Use "bsg" interface to SCSI midlayer (+ fixes)

– extended CDBs
– bidirectional
– iovec

● Use "bidi" patches from Panasas (+ fixes)
● Why not Intel or IBM initiators?

– reliance on old kernel APIs
– non-bidirectional

Target

● Use "stgt" for SCSI and iSCSI
– all userspace
– leading approach for linux adoption
– active development

● Many changes to stgt, most merged
– OSD target command processing
– iSCSI bidirectional implementation
– iSER (iSCSI/RDMA) implementation
– bug fixes

● Why not kernel-based iSCSI target?
– not the linux way
– living in out-of-tree modules is difficult

OSD Target Emulator

● Processes the commands delivered by stgt
● Command categories

– object manipulation (done)
– attribute manipulation (done)
– I/O (done)
– security (not done)
– device management (partial)
– collections (soon)

● Object storage
– via POSIX and ext3: pread, pwrite

● Attributes
– via SQLite, full SQL implementation
– complex operations very succinct and fast

Other OSD Target Emulators

● IBM ObjectStone
– binary-only x86-32 blob
– cannot modify or evaluate

● Intel uosd
– very simple, single-file implementation
– only 8 basic commands
– each attribute stored in a separate file

● Du, UMN
– extensions to Intel
– added extensive security infrastructure
– same attribute implementation

PVFS Modifications

stock datafile

metafile mdfile

Overheads

● SQLite is handy, but slow
● iSCSI processing can be overlapped with threading

PVFS Latency

● OSD slower than PVFS, mostly due to 83µs SQLite
● Create slower but scales identically
● "Ping" operation slightly faster on OSD (not shown): avoids

SQLite processing

Stat operation Create operation

Create scaling with #clients

● Object database on disk: identical performance
● On RAM, OSD only 80% rate of PVFS I/O server
● Recent threading addition reduces this gap

Storage on disk Storage on RAM

I/O Throughput

● One client writing or reading to one disk, using perf
● PVFS achieves higher throughput at large messages
● OSD ramps up better at small messages

(PVFS flow tuning issue)

PVFS I/O server OSD

I/O Server Scaling

● One client, many I/O servers (or OSDs), perf at 64 kB
● Both ramp up okay
● PVFS penalized by default flow tunings and small size
● Terrible read behavior from TCP congestion control
● (iSER work removes this bottleneck.)

PVFS I/O server OSD

Application (BTIO) Performance

● Near identical performance
● Goal is to achieve similar performance, not improvement

BTIO Class B BTIO Class C

Application (Flash) Performance

● Goal is to achieve similar performance, not improvement
● Stock PVFS performs poorly due to small message sizes

Major Accomplishments

● Use OSDs natively in a real parallel file system
● Infrastructure for OSDs

– Library for OSD commands at initiator
– Emulator for OSD target
– iSCSI over RDMA for performance

● Revisit assumptions in PFS architecture
– separate data and metadata
– servers in the data path
– servers at all

Barriers
● PVFS server functionality assumptions

– handle mapping
– server-initiated operations (soon)

● Other parallel FS assumptions
– Ceph: servers forward write data to other servers
– Lustre: byte-range locking, callbacks
– Panasas: closer fit
– NFSv4: OSD mapping exists (datafile only)

● lack of OSD hardware
● need for OSD extensions

– atomic operations
– scatter/gather on server
– server-chosen retrieved attributes offset

Publications
● Integrating parallel file systems with object-

based storage devices
– SC07, Reno, NV, November 2007
– system design, PFS mapping, PVFS impl.
– overheads, metadata scaling, IO throughput, apps

● Attribute storage design for object-based
storage devices
– MSST07, San Diego, CA, September 2007
– details on SQL use in metadata storage

● iSER storage target for object-based storage
devices
– MSST07 SNAPI Workshop, San Diego, Sept 07
– iSCSI over RDMA

● Metadata design paper
– to FAST08, due Sep 07

Staff

● Pete Wyckoff
– PI, 25+% time
– initiator and PVFS lead

● Ananth Devulapalli
– OSC staff, 25+% time
– target lead

● Dennis Dalessandro
– OSC staff, 25% time
– network lead

Students

● Nawab Ali
– OSU graduate student, CS, 2nd year, half time
– advisor: P. Sadayappan
– parallel FS metadata design

● Paul Betts
– OSU undergraduate, senior CS, 15 hr/wk
– initiator kernel module, python interface

● Alex Moore
– OSU undergraduate, senior CS, 15 hr/wk
– target attribute handling

● Tim Arnold
– OSU undergraduate, sophomore physics, 15 hr/wk
– LIST, collection functions

Conclusion

● Enable higher semantic interface to storage
● Avoid middle-box interference on data path
● Understand roles of clients, metadata servers,

IO servers, lock servers, etc in parallel FSes

● Actively sharing code with
– Panasas
– Seagate
– Fujitsu

● Goal: build a single shared OSD environment to
encourage research by ourselves and others

